MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020

Elastic full waveform inversion with extrapolated low frequency data

Hongyu Sun and Laurent Demanet

[EARTH, ATMOSPHERIC AND PLANETARY SCIENCES]

Motivation: elastic full waveform inversion

Why elastic FWI

- strong elastic effects;
- reservoir characterization;
- near-surface investigations;

• ...

How (Tarantola, 1986; Mora, 1987; Köhn et al., 2012)

$$J = \frac{1}{2} \delta \boldsymbol{d}^{T} \delta \boldsymbol{d} = \frac{1}{2} \sum_{s} \sum_{r} \int [\boldsymbol{u}_{cal} - \boldsymbol{u}_{obs}]^{2} dt$$
$$\int_{v_{x}} \int [\boldsymbol{v}_{y} + \boldsymbol{v}_{y} + \boldsymbol{v}_{y}]^{2} dt$$

$$\boldsymbol{m}_{k+1} = \boldsymbol{m}_k - \mu_k \left(\frac{\partial J}{\partial \boldsymbol{m}}\right)_k \quad \longrightarrow \quad \boldsymbol{m}: \ \boldsymbol{v}_p, \ \boldsymbol{v}_s, \ \rho$$

Motivation: cycle-skipping

Cycle-skipping is more severe in elastic FWI compared to acoustic FWI, due to the short S-wave wavelength.

Motivation: elastic full waveform inversion

Cycle-skipping is more serve in elastic FWI and requires lower starting frequency.

Synthetic data studies:

	name of benchmark model	starting model	starting frequency
Brossier et al., 2009	Overthrust	Gaussian smoothing	1.7Hz
Brossier et al., 2010	Valhall	Gaussian smoothing	2.0Hz
Choi et al., 2008	Marmousi2	velocity-gradient	0.16Hz
Köhn et al., 2012	Marmousi2	velocity-gradient	0-2Hz
Jeong et al., 2012	Marmousi2	velocity-gradient	0.12Hz

Field data studies: lack of low frequencies

Crase et al., 1990; Sears et al., 2010; Vigh et al., 2014; Raknes et al., 2015; Marjanovi´c et al., 2018; Borisov et al., 2020, etc.

RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020

Method: bandwidth extension with deep learning

Deep neural networks (DNN):

 $y = f(x, w) = f_L(..., f_2(f_1(x)))$

where:

- x: seismograms bandlimited to high frequencies
- y: the same seismograms bandlimited to low frequencies
- w: parameters of DNN to be learned
- **Training:** learning **w** with known **y**

 $\boldsymbol{J}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} L(y_i, f(x_i, \boldsymbol{w}))$

• **Test** (predict): f(x, w)

f(y) = ay

 $PReLU(x_i) = \begin{cases} x_i & if x_i > 0\\ a_i x_i & if x_i < 0 \end{cases}$

• **Optimizer**: Adam (Kingma and Ba, 2014)

(Sun and Demanet, 2018)

Method: architecture of convolutional neural networks

A large receptive field is achieved by directly using a large filter:

$$x$$
 $f(x, w) = f_L(...f_2(f_1(x)))$ y

(Sun and Demanet, 2020)

Method: training and test datasets

Test model: unknown low frequencies (a) P-wave velocity [km/s] Depth [km] 3 v_p 2 3 8 10 2 6 Distance [km] (b) 2.5 S-wave velocity [km/s] 2 Depth [km] 1.5 v_s 2 0.5 3 10 2 6 8 Distance [km] (c) 2.5 Density [kg/m3] Depth [km] 2 ρ 2 1.5

6

3

2

4

Distance [km]

Training model: known low frequencies

horizontal component v_x •

training dataset: 6 models \times 100 shots \times 400 receivers 1 models \times 50 shots \times 400 receivers test dataset:

vertical component v_{γ}

training dataset: 6 models \times 100 shots \times 400 receivers 1 models \times 50 shots \times 400 receivers test dataset:

MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020

8

10

Low frequency extrapolation of multicomponent data

Extrapolate 0.1 - 5Hz low frequency data from 5 - 25Hz bandlimited data using ARCH1

vertical component (v_v)

Low frequency extrapolation of multicomponent data

Extrapolation results of ARCH1 trained on elastic data

Low frequency extrapolation of multicomponent data

Extrapolation results of ARCH1 trained on elastic data

horizontal component (v_x)

Generalization over physical models

Extrapolation results of ARCH1 trained on acoustic data

horizontal component (v_x)

Extrapolated elastic FWI

- source: Ricker wavelet with a dominant frequency of 10Hz;
- extrapolate 0.1-4Hz low frequency data from 4-25Hz bandlimited data using ARCH1 (the lower band of the bandlimited data is 4Hz);
- a free surface condition is applied to the top of models (multiples in training and test datasets);
- multi-scale FWI: 2-4Hz, 4-6Hz, 4-10Hz and 4-20Hz (Bunks et al., 1995);
- optimizer: L-BFGS with 30 iterations in each frequency band;

Extrapolated elastic FWI

Extrapolation results of ARCH1 trained on elastic data with multiples

Elastic FWI using 2-4Hz low frequency data

Elastic FWI continued with 4-20Hz bandlimited data

Conclusions

- The deep learning model is designed with a large receptive field by directly using a large filter on each convolutional layers.
- By training the neural network twice, once with a dataset of horizontal components and once with a dataset of vertical components, we can extrapolate the low frequencies of multicomponent band-limited recordings separately.
- The accuracy of the extrapolated low frequencies is enough to provide low-wavenumber starting models for elastic FWI of P-wave and S-wave velocities using band-limited data above 4Hz.
- The neural network trained on purely acoustic data shows larger prediction error on elastic test dataset compared to the neural network trained on elastic data.

Limitations

- Although the accuracy of extrapolated low frequency data is sufficient for elastic FWI of P-wave and S-wave velocities started from 4Hz band-limited data, challenges remain to enable the neural network to work for the data band-limited above 4Hz.
- Starting from the 2-4Hz extrapolated data, the inversion of density model still surfers from the cycle-skipping problem and lack of the low-wavenumber structures.
- In addition to the wave propagation driven by different physics, another factor that makes the generalization fail could be numerical modeling.
- The source signal is assumed to be known for extrapolated elastic FWI.
- The absence of a physical interpretation for the operations performed by the network.

Acknowledgements

- Tensorflow (Abadi et al., 2015) and Keras (Chollet et al., 2015) are used for deep learning.
- Elastic FWI is implemented using the open source code DENISE (https://github.com/danielkoehn/DENISE-Black-Edition).
- Acoustic training datasets are simulated using Pysit (Hewett & Demanet, 2013).

- Thanks to MIT ERL and Total S A for support.
- Thanks for your attention.

Questions and Comments?