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Motivation: elastic full waveform inversion

Why elastic FWI

How (Tarantola, 1986; Mora, 1987; K ሷ𝑜hn et al., 2012)

• strong elastic effects; 
• reservoir characterization; 
• near-surface investigations;
• …
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observed recording

calculated recording

Motivation: cycle-skipping

Cycle-skipping is more severe in elastic FWI compared to acoustic FWI, due to the short S-wave wavelength. 
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Motivation: elastic full waveform inversion

Cycle-skipping is more serve in elastic FWI and requires lower starting frequency.

Synthetic data studies:

name of benchmark model starting model starting frequency

Brossier et al., 2009 Overthrust Gaussian smoothing 1.7Hz

Brossier et al., 2010 Valhall Gaussian smoothing 2.0Hz

Choi et al., 2008 Marmousi2 velocity-gradient 0.16Hz

K ሷ𝑜hn et al., 2012 Marmousi2 velocity-gradient 0-2Hz

Jeong et al., 2012 Marmousi2 velocity-gradient 0.12Hz

Field data studies: lack of low frequencies

Crase et al., 1990; Sears et al., 2010; Vigh et al.,2014; Raknes et al.,2015; Marjanovi ć et al., 2018; 

Borisov et al., 2020, etc.
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 Deep neural networks (DNN): 

𝒚 = 𝑓 𝒙,𝒘 = 𝑓𝐿(…𝑓2(𝑓1(𝒙)))
where:

• 𝒙: seismograms bandlimited to high frequencies

• 𝒚: the same seismograms bandlimited to low frequencies

• 𝒘: parameters of DNN to be learned

 Training: learning 𝒘 with known 𝒚
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 Test (predict): 𝑓 𝒙,𝒘

Method: bandwidth extension with deep learning

(Sun and Demanet, 2018)

• Optimizer：Adam (Kingma and Ba, 2014) 
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(Sun and Demanet, 2020)

𝒙 𝒚𝑓 𝒙,𝒘 = 𝑓𝐿(…𝑓2(𝑓1(𝒙)))

Method: architecture of convolutional neural networks

A large receptive field is achieved by directly using a large filter：
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Method: training and test datasets

Training model: known low frequencies Test model: unknown low frequencies 

𝒗𝒑

𝒗𝒔

𝝆

training dataset: 6 models × 100 shots × 400 receivers

test dataset:       1 models × 50  shots × 400 receivers

training dataset: 6 models × 100 shots × 400 receivers

test dataset:       1 models × 50   shots × 400 receivers

• horizontal component 𝒗𝒙

• vertical component 𝒗𝒚
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Low frequency extrapolation of multicomponent data

horizontal component (𝑣𝑥)                                       vertical component (𝑣𝑦)

Extrapolate 0.1 - 5Hz low frequency data from 5 - 25Hz bandlimited data using ARCH1
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Low frequency extrapolation of multicomponent data

vertical component 

(𝒗𝒚)  

horizontal component 

(𝒗𝒙)

True 0.1-5HzPredicted 0.1-5HzInput 5-25Hz 

Extrapolation results of ARCH1 trained on elastic data
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Low frequency extrapolation of multicomponent data

vertical component  (𝒗𝒚)                                                horizontal component (𝒗𝒙)

Extrapolation results of ARCH1 trained on elastic data
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Generalization over physical models

vertical component  (𝒗𝒚)                                                horizontal component (𝒗𝒙)

Extrapolation results of ARCH1 trained on acoustic data
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Extrapolated elastic FWI

• source: Ricker wavelet with a dominant frequency of 10Hz;

• extrapolate 0.1-4Hz low frequency data from 4-25Hz bandlimited data using ARCH1 

(the lower band of the bandlimited data is 4Hz);

• a free surface condition is applied to the top of models 

(multiples in training and test datasets);

• multi-scale FWI: 2-4Hz, 4-6Hz, 4-10Hz and 4-20Hz (Bunks et al.,1995);

• optimizer: L-BFGS with 30 iterations in each frequency band;
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Extrapolated elastic FWI

True 0.1-4HzPredicted 0.1-4HzInput 4-25Hz 

vertical component 

(𝒗𝒚)  

horizontal component 

(𝒗𝒙)

Extrapolation results of ARCH1 trained on elastic data with multiples 
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Elastic FWI using 2-4Hz low frequency data

P-wave velocity S-wave velocity                            Density

initial model

elastic FWI with

extrapolated

2-4Hz data

elastic FWI with

true 2-4Hz data
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Elastic FWI continued with 4-20Hz bandlimited data

started from

initial model

started from

extrapolated

2-4Hz data

started from

true 2-4Hz data

P-wave velocity S-wave velocity                            Density
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Conclusions

 The deep learning model is designed with a large receptive field by directly using a large filter 

on each convolutional layers.

 By training the neural network twice, once with a dataset of horizontal components and once 

with a dataset of vertical components, we can extrapolate the low frequencies of multi-

component band-limited recordings separately.

 The accuracy of the extrapolated low frequencies is enough to provide low-wavenumber 

starting models for elastic FWI of P-wave and S-wave velocities using band-limited data above 

4Hz.

 The neural network trained on purely acoustic data shows larger prediction error on elastic test 

dataset compared to the neural network trained on elastic data.
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Limitations

 Although the accuracy of extrapolated low frequency data is sufficient for elastic FWI of P-wave 

and S-wave velocities started from 4Hz band-limited data, challenges remain to enable the 

neural network to work for the data band-limited above 4Hz. 

 Starting from the 2-4Hz extrapolated data, the inversion of density model still surfers from the 

cycle-skipping problem and lack of the low-wavenumber structures. 

 In addition to the wave propagation driven by different physics, another factor that makes the 

generalization fail could be numerical modeling. 

 The source signal is assumed to be known for extrapolated elastic FWI.

 The absence of a physical interpretation for the operations performed by the network.
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• Tensorflow (Abadi et al., 2015) and Keras (Chollet et al., 2015) are used for deep learning. 

• Elastic FWI is implemented using the open source code DENISE (https://github.com/daniel-

koehn/DENISE-Black-Edition). 

• Acoustic training datasets are simulated using Pysit (Hewett & Demanet, 2013).


