MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020

Time-dependent Brittle Deformation in Basalt

Tiange Xing Post-doc Associate, DEPARTMENT OF EARTH, ATMOSPHERIC AND PLANETARY SCIENCES

In collaboration with Matej Pec, Hamed Ghaffari, Ulrich Mok, Lubna AlBarghouty

the increasing CO₂ concentration in the atmosphere

CO₂ is converted to solid carbonates through reaction with Mg, Ca rich minerals

Geological CO₂ Storage (GCS) is

proposed as a permanent solution to

٠

- Basaltic rocks are considered as ۲ reservoirs due to their widespread occurrence and high Mg, Ca content
- Pilot site in Iceland has injected 23,200 metric tons of CO_2 by 2017, with carbon storage efficiency of $72 \pm 5\%$ (von Strandmann et al., 2019)

Geological CO₂ Storage Using Basalts

Hellisheidi

Injection site

HN-04

Α.

1000

1200

1400

1600

1800

2000

HN-02

Rock-fluid Interaction

- The deformation of rocks can be ٠ affected by the interaction between rock and fluid
- Mechanically, fluid can alter the stress condition ۲
- Fluids also react with rocks, changing the bulk composition and altering their pore structure ۲
- What is the influence of CO₂-rich fluids on the strength and permeability of basaltic rocks? ٠

Lisabeth et al. (2017)

loalesced porosity laye

channels

B

С

Rocks can fail at constant applied stresses below their short-term ۲ strength due to creep

 \rightarrow

 \rightarrow

 $\xrightarrow{\sigma_3}$

 \rightarrow

 \rightarrow

- Flaws in rocks are subcritically • stressed and propagate slowly due to corrosion chemical (a stress weakening process) at crack tips (e.g. Hadizadeh and Law, 1991)
- Critical fracture then occurs after some time delay when the cracks coalesce and reach a critical length
- Fluid-rock interactions can affect the crack growth rate

failure

500

400 (MPa)

300

200

100

Ω

400

stress

Differential

- Rocks can fail at constant applied stresses below their short-term ۲ strength due to creep
- Flaws in rocks are subcritically • stressed and propagate slowly due to corrosion chemical (a stress weakening process) at crack tips (e.g. Hadizadeh and Law, 1991)
- Critical fracture then occurs after some time delay when the cracks coalesce and reach a critical length
- Fluid-rock interactions can affect the crack growth rate

failure

• Rocks can fail at constant applied stresses below their short-term strength due to creep

 \rightarrow

 \rightarrow

 $\xrightarrow{\sigma_3}$

 \rightarrow

 \rightarrow

 $N_{\rm V}^{-1/2}$

 σ_1

Brantut et al. (2012)

- Flaws in rocks are subcritically stressed and propagate slowly due to stress corrosion (a chemical weakening process) at crack tips (e.g. Hadizadeh and Law, 1991)
- Critical fracture then occurs after some time delay when the cracks coalesce and reach a critical length
- Fluid-rock interactions can affect the crack growth rate

constant

Earth Resources Laboratory

failure

Rocks can fail at constant applied stresses below their short-term ۲ strength due to creep

 \rightarrow

 \rightarrow

 $\xrightarrow{\sigma_3}$

 \rightarrow

 \rightarrow

 $N_{\rm V}^{-1/2}$

 σ_1

- Flaws in rocks are subcritically • stressed and propagate slowly due to corrosion chemical (a stress weakening process) at crack tips (e.g. Hadizadeh and Law, 1991)
- Critical fracture then occurs after some time delay when the cracks coalesce and reach a critical length
- Fluid-rock interactions can affect the crack growth rate

stress

Differential

• Rocks can fail at constant applied stresses below their short-term strength due to creep

 \rightarrow

 \rightarrow

 $\xrightarrow{\sigma_3}$

 \rightarrow

 \rightarrow

- Flaws in rocks are subcritically stressed and propagate slowly due to stress corrosion (a chemical weakening process) at crack tips (e.g. Hadizadeh and Law, 1991)
- Critical fracture then occurs after some time delay when the cracks coalesce and reach a critical length
- Fluid-rock interactions can affect the crack growth rate

Brantut et al. (2012)

 $N_{\rm V}^{-1/2}$

 σ_1

failure

Experiment Design

- Objectives (Multiphysics Characterization):
 - Failure strength
 - Creep rate
 - AE signatures
 - Vp & Vs evolution
 - Poro-perm evolution
 - Size/scale effect
 - Fluid composition evolution
- Sample Diameter:
 - 3 inches in height
 - 1.5 inches in diameter
- Dry & saturated (Water/CO₂) experiments
- All at reservoir P-T conditions

(Peff= 50 MPa, T= 23°~80°C)

 Sample deformed using AutoLab-3000 Apparatus in the Rock Deformation Lab (54-714 EAPS, MIT)

Basalt from CarbFix site, Iceland

Experiment Design

- Objectives (Multiphysics Characterization):
 - Failure strength
 - Creep rate
 - AE signatures
 - Vp & Vs evolution
 - Poro-perm evolution
 - Size/scale effect
 - Fluid composition evolution
- Sample Diameter:
 - 3 inches in height
 - 1.5 inches in diameter
- Dry & saturated (Water CO₂) experiments
- All at reservoir P-T conditions

(Peff= 50 MPa, T= 23°~80°C,

 Sample deformed using AutoLab-3000 Apparatus in the Rock Deformation Lab (54-714 EAPS, MIT)

Basalt from CarbFix site, Iceland

Pliī

Experiment Design

- Objectives (Multiphysics Characterization):
 - Failure strength
 - Creep rate
 - AE signatures
 - Vp & Vs evolution
 - Poro-perm evolution
 - Size/scale effect
 - Fluid composition evolution
- Sample Diameter:
 - 3 inches in height
 - 1.5 inches in diameter
- Dry & saturated (Water CO₂) experiments
 Future work
- All at reservoir P-T conditions

(Peff= 50 MPa, T= 23°~80°C

 Sample deformed using AutoLab-3000 Apparatus in the Rock Deformation Lab (54-714 EAPS, MIT)

Basalt from CarbFix site, Iceland

Pliī

Mechanical Data

Saturated, T = 80°C

Dry, T = 80°C

Mechanical Data

Saturated, T = 80°C

Dry, T = 80°C

Creep Rate

 Creep rates in fluid-saturated experiment exhibit strong stress dependence compared to the dry experiment

Acoustic Emissions

Dry, T = 80°C

- High AE rate during primary creep
- The AE rate dropped significantly within the first hour of the creep deformation
- AE events occur more frequently in the fluid-saturated experiment

Saturated, T = 80°C

AE Amplitude

- More AE events with amplitude >200mV are observed in fluid-saturated experiment
- Stress increase promotes the occurrence of AEs

Increase in Stress

AE Amplitude

- More AE events with amplitude >200mV are observed in fluid-saturated experiment
- Stress increase promotes the occurrence of AEs

Saturated Experiment

Before

After

Saturated Experiment

Preexisting Pores Newlygenerated Pores

Porosity Change (Saturated Sample)

 Porosity increases during the fluidsaturated experiment

Porosity Change (Dry Sample)

 Porosity decreases during the dry experiment

AE Location

MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020

AE Location

Saturated

MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020

Summary

Results confirm that presence of fluid affects the creep deformation:

	Water-saturated	Dry
Strength	Weak	Strong
Creep Rate	Strong stress-dependence	No obvious stress-dependence
Porosity	Increase due to dissolution	Decrease due to compaction
AE Statistics	More high amplitude events	Less high amplitude events
AE Location	Distributed	Localized

- Future work: creep experiments on rocks saturated with CO₂ rich fluid.
- Application: provide guidance to future applications of geological CO₂ storage