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Summary 
 
In the wave propagation simulation by finite difference 

time domain (FDTD), the perfectly matched layer (PML) is 
often applied to eliminate the reflection artifacts due to the 
truncation of the finite computational domain. In the 
acoustic Logging-While-Drilling (LWD) FDTD simulation, 
due to high impedance contrast between the drill collar and 
fluid in the borehole, the stability and efficiency of PML 

scheme is critical to simulate complicated wave modes 
accurately. In this paper, we compare four different PML 
implementations in FDTD in the acoustic LWD simulation, 
including splitting PML (SPML), Multi-axis PML (MPML), 
Non-splitting PML (NPML), and complex frequency-
shifted PML (CFS-PML). The simulation indicates that 
NPML and CFS-PML can more efficiently absorb the 
guide wave reflection from the computational boundaries 
than SPML and MPML. For large simulation time, SPML, 
MPML and NPML are numerically instable. However, 
stability of MPML can be improved further to some extent. 

Among all, CFS-PML is the best choice for LWD modeling. 
The effects of CFS-PML parameters on the absorbing 
efficiency are investigated, including damping profile, 
frequency-shifted factor, scaling factor and PML thickness. 
For a typical LWD case, the best value for maximum of 
quadratic damping profile d0 is about 1. The optimal 

parameter space for the maximum value of linear 
frequency-shifted factor α0 and scaling factor β0 depends on 
the PML damping profile and thickness. If the PML 
thickness is 10 grids, the reflection residual can be reduced 
to less than 1%, using optimal CFS-PML parameters, while 
only about 0.5‰ reflection artifacts are observed for 20 
grids PML buffer.  
 

Introduction 

 
Acoustic LWD has been one of hot research areas in 

exploration geophysics recently. Numerical simulations can 
help us understand the characteristics of the complicated 
wave field. Wave number integration (e.g. Wang and Tao, 
2011) and finite difference schemes (e.g. Huang, 2003; 
Wang and Tang, 2003; Wang et al., 2009) are commonly 
used methods to simulate acoustic logging wave field. The 

former is fast but can only deal with axial symmetric model. 
On the other hand, finite difference method, can handle 
general spatial variations of elastic properties, such as tool 
isolation design (e.g. Chen et al., 1998; Wang and Tao, 

2009) and acoustic LWD tool eccentricity (e.g. Huang, 
2003).  
 

To avoid the artificial reflected energy from computational 
domain boundaries, PML (Bérenger, 1994) is introduced as 
absorbing boundary layers, which is superior to traditional 
absorbing boundary condition (ABC) methods. Compared 
to wire-line case, the acoustic LWD simulation requires 
PML with higher absorbing efficiency to capture the rich 

and subtle features in the late arrivals. In the paper, FDTD 
simulations in acoustic LWD case are presented for 
different PML implementations, in which the borehole 
wave modes are very complicated. Firstly, the merits and 
demerits of different PMLs are compared. Then the optimal 
parameters of CFS-PML in typical LWD cases are also 
explored.  
 

PML Theory for Elastic Wave Equation 
 
The stress-velocity scheme of elastic wave equations in 

Cartesian coordinate (x, y, z) is as following, 
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where v is the particle velocity vector, σ is the stress tensor, 
ρ is the density of medium, and c is the stiffness tensor.  
 
With a complex stretch factor, for instance in x direction,  
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governing equation in PML region is similar to equation (1), 

except that the space derivative 
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Here, dx(x) is the damping function and ω is angular 
frequency.  In such a configuration, the incident plane wave 
along x direction can be exponentially attenuated in the 
PML region. To avoid convolution operation, in the SPML, 
each velocity and stress component is split further into 
parallel and perpendicular components with respect to the 
coordinate directions (Collino, 2001; Wang et al., 2009).  

 
To improve the stability of SPML, Meza-Fajardo et al. 
(2008) analyzed the numerical stability of SPML and 
introduce a modified version, MPML, in which damping in 
different direction is coupled. Taking x direction for 
example, the damping profile dx(x) is modified 

as ( ) ( ) ( ) ( )x x x

x x yx x zx x
d x d x p d x p d x= + + , where ( )x

xd x  can 
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derived from SPML, and the pyx and pzx are correction 
coefficients that can be tuned according to specific cases. 
 
The two main drawbacks in SPML and MPML are: 1) the 
large memory requirement due to the wave field splitting in 
PML region; 2) the poor absorbing performance for grazing 
incident wave because only the normal component of the 
incident wave is attenuated in SPML and MPML. Wang 
and Tang (2003) introduced non-splitting PML (NPML), in 

which a trapezoidal rule (time accuracy is second order) is 
applied to calculate the convolutions in PML formula. 
 
In order to absorb evanescent waves and guide waves 
efficiently, Roden and Gendney (2000) proposed a general 

stretch factor S
d

i
β

α ω
= +

+
 for CFS-PML, where α is 

frequency-shifted factor and β is a scaling factor. 
Komatitch et al. (2007) used recursive convolution method 
to implement the CFS-PML with FDTD. Zhang and Shen 
(2010) used auxiliary differential equations (ADE) method 

to attain higher order time accuracy. All of the PML 
methods described above are summarized in Table 1. 

Table 1:  Summary of PML 

 SPML MPML NPML CFS-PML 

α 0 0 0 Non-zero 
β 1 1 1 Variable 
dx 

x

xd  (1+pyx+pzx)
x

xd  
x

xd  
x

xd  

Convolution No No Yes Yes 

 
In general, the damping profile is chosen as a polynomial 
function. Here we follow Collino’s equation (Collino and 
Tsogka, 2001), for the damping along  x  direction: 
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where lx is  distance from PML-interior interface, n is 2 in 
this paper and d0 is the maximum value of d, and L is the 
thickness of PML layer. 
 
The value of α and β in CFS-PML are usually given by the 
following polynomials (e.g. Komtatitsch et al., 2007), 
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where we choose m and p as 2 and 1, respectively, and α0 
and β0 are the maximum values of α and β. 

 

Acoustic LWD System and Medium Parameters 

 
The model of the borehole and LWD tool configuration is 
illustrated in Figure 1 and the tool/model parameters are 
listed in Table 2. 

 

 
 
Figure 1: Schematic diagram of model and the location of source 
and receivers. (a) Top view of the model, and vibration modes of 
sources are indicated by arrows. (b) Schematic diagram of x-z 
cross-section. x is along horizontal direction, and z is vertical 
direction.  

Table 2:  Parameters of tool and formation 

 Vp(m/s) Vs(m/s) Density(g/cm3) Radius(mm) 

Inner Fluid 1470 — 1.00 27 

Drill collar 5860 3130 7.85 90 

Outer Fluid 1470 — 1.00 117 

Formation 3927 2455 2.32 ∞ 

 

Computational Results and Discussion 

 
Firstly, we implement the four different PMLs in 2D LWD 
case for the model shown in Figure 1b. Staggered grid 
FDTD scheme is used with 4th order space accuracy and 2nd 
order in time (Tao et al., 2008). The model is discretized 
into 123 by 334 grids along x- and z- direction respectively. 
The grid spacing is 9mm, and time step is 0.9µs. The PML 
layer thickness is 20 grids. A monopole source is applied 

and the source time function is a Ricker wavelet with 
central frequency fc as 10 kHz. d0, α0 and β0 are chosen as 1, 
πfc and 7 respectively. The results are demonstrated in 
Figure 2. 
 
In case of SPML (Figure 2a), drill collar wave, shear (S) 

wave, and Stoneley (St.) wave can be easily identified from 
the arrival time. Also, the artificial reflection from 
boundaries (dash black line) is visible, which is reflected St. 
wave by time semblance method (Kimball and Marzetta, 
1986). The simulation becomes unstable after 10 ms, 
indicating ill-posed nature of SPML scheme in LWD case.  
 
Figure 2b shows the result of MPML with correction 
coefficients pzx and pxz taken as 0.1. The reflection artifacts 
are still visible, whereas the instability issue is improved to 
some extent (it appears after 13 ms).  
 
Comparing figures 2a to 2c, NPML (Figure 2c) is superior 
to SPML and MPML in suppressing reflected St. wave. 
However, the intrinsic instability of NPML (after 12 ms in 
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Figure 2c) in LWD case indicates that it is not suitable for 
large simulation time. 
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Figure 2: Waveform of array receivers in LWD case. (a) Result of 
SPML; (b) Result of MPML;(c) Result of NPML;(d) Result of  
ADE CFS-PML; (e) Waveform zoomed in by 100 times of (d); (f) 
Velocity-time analysis of the array waveform after 4ms of figure (e) 

 

Ineffectiveness to evanescent and instability in long time 
simulation are reported in electromagnetic wave simulation 
(Bérenger, 1997) by FDTD with conventional PML 
(Bérenger, 1994). Kuzuoglu and Mittra (1996) analyzed the 
causality of conventional PML and found that the 
conventional stretch factor does not meet the causality. 
They introduced CFS-PML where they use a modified 

factor 1
1

d
S

iω
= +

+
. In this case, the pole is moved from the 

real axis to the complex plane. The conventional PML 
(Bérenger, 1994) is a high frequency approximate solution 
of CFS-PML and does not perform well for low 
frequencies. Abarbanel and Gottlieb (1997) proved that the 
conventional PML is only weakly well-posed and would 
diverge under small perturbations. Due to this, instable 
signals appear in large simulation time (Figure 2a to 2c). 
 
We implement the CFS-PML (Figure 2d) with the ADE 
method (Zhang and Shen, 2010). Obviously, CFS-PML is 
the winner among the four in the sense of stability and 
absorbing efficiency. The coda after 4 ms are zoomed in by 
100 times (Figure 2e), and can be identified as reflected St. 
wave by time semblance (Figure 2f). In the LWD FDTD 
simulation, the main source of PML artifacts is guide wave 
(e.g. St. wave). The parameters of CFS-PML can be finely 

tuned to optimize the absorption of the guide waves, which 
is discussed in the next section. 

 

CFS-PML Parameter optimization in LWD Simulation 

 

The effects of CFS-PML parameters on the absorption 
efficiency have been discussed based on homogenous 
models (e.g. Komatitsch, 2007; Zhang and Shen, 2010). 
Here we optimize the parameters specifically for the LWD 

simulation. The computational domain for 3D model is 30 
cm by 30 cm by 20 cm (shown in Figure 1). The media 
parameters and borehole geometry are defined in Table 2.  
The space grid size is 5mm; time step is 0.4µs and total 
simulation time is 2 ms. Thousands of simulations are 
performed, using different PML parameter combinations. 

Here d0, α0, β0 and L are considered. A very large model is 
chosen as a reference model, in which no reflected energy 
from the boundaries appears in the first 2 ms time window. 
The global error is defined as: 
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where Eg is global error of a given PML model, PPML and 

Pref  are the pressure field of the PML model and reference 
model respectively, and t is time. The global errors are 
shown in Figure 3 and Figure 4, for different d0, α0, β0 and 
L. 

 
As shown in Figure 3, the global error changes with d0. 
And the minimum global error is less than 1% when d0 is 1, 
while others are lager than that or have less space than that. 
It can be drawn that the best value of d0 is 1. This differs 
from the result of Zhang and Shen (2010) due to the 

inhomogeneous model in LWD case.  At the same time, we 
can also find that the optimal value of β0 is between 6 and 
13, and the best combination of α 0 and β0 is about 1.5 and 
10 from Figure 3(b). Even here, we observe some deviation 
from empirical formula for β0 suggested by Zhang and 
Shen (2010). Therefore, the empirical formula of β0 should 
be modified in inhomogeneous model such as LWD case.  
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Figure 3 Contours of global error with α0, β0 and d0 variation 
(L=10).(a) Contours of global error as function of α 0, and β0 with 
d0 equal to 0.5; (b) Contours of global error as function of α 0, and 
β0 with d0 equal to 1; (c) Contours of global error as function of α 0, 
and β0 with d0 equal to 1.5; (d) Contours of global error as function 
of α 0, and β0 with d0 equal to 2; (e) Contours of global error as 
function of α 0, and β0 with d0 equal to 2.5; (f) Contours of global 
error as function of α 0, and β0 with d0 equal to 3 
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Figure 4 Contours of global error with α0, β0 and L variation 

(d0=1). (a) Contours of global error as function of α0, and β0 with 

L equal to 20; (b) Contours of global error as function of α0, and 

β0 with L equal to 30 

 
The effect of thickness of PML on global error with d0=1 is 
also discussed in the paper, as shown in Figure 4. 
Combining Figure 4 with Figure 3(b), we can find that the 

global error decreases as L increase, and the range of 
optimal α0 and β0 become larger. Increasing PML thickness 
to 20 grids, we can get a reflectivity of PML 5‰ for a large 
range of α0 and β0. This indicates the excellent performance 
of CFS-PML. 
 

Conclusions 

 
Four kinds of PML are implemented in FDTD in the 2D 
acoustic LWD simulation. The simulation indicates that 
NPML and CFS-PML can more efficiently absorb the 
guide wave reflection from the computation boundaries 
than SPML and MPML. For long time simulation, the 
numerical instability is observed in SPML, MPML and 

NPML, though MPML can improve the stability to some 
extent. Among of all, CFS-PML is the best choice for LWD 
simulation.  
The effects of CFS-PML parameters on the absorbing 
efficiency are investigated based on thousands of 3D 
simulations. For a typical LWD case, the best maximum 
value of quadratic damping profile d0 is about 1. The 
optimal parameter space for the maximum value of linear 
frequency-shifted factor α0 and scaling factor β0 depends on 

the PML damping profile and thickness. If the PML 
thickness is 10 grids, the reflection residual can be reduced 
to less than 1%, using optimal PML parameters, while only 
less than 0.5% reflection artifacts are observed given the 
PML thickness is 20. 
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