It is well known that there is no “universal” permeability-porosity relationship valid in all porous media. However, the evolution of permeability and porosity in rocks can be constrained provided that the processes changing the pore space are known. In this paper, we review observations of the relationship between permeability and porosity during rock evolution and interpret them in terms of creation/destruction of effectively and non-effectively conducting pore space. We focus on laboratory processes, namely, plastic compaction of aggregates, elastic-brittle deformation of granular rocks, dilatant and thermal microcracking of dense rocks, chemically driven processes, as a way to approach naturally occurring geological processes. In particular, the chemically driven processes and their corresponding evolution permeability-porosity relationships are discussed in relation to sedimentary rocks diagenesis.